
Package: BIGL (via r-universe)
September 12, 2024

Type Package

Title Biochemically Intuitive Generalized Loewe Model

Version 1.8.0

Date 2023-06-13

Author Heather Turner, Annelies Tourny, Olivier Thas, Maxim Nazarov,
Rytis Bagdziunas, Stijn Hawinkel, Javier Franco Pérez

Maintainer Maxim Nazarov <maxim.nazarov@openanalytics.eu>

Description Response surface methods for drug synergy analysis.
Available methods include generalized and classical Loewe
formulations as well as Highest Single Agent methodology.
Response surfaces can be plotted in an interactive 3-D plot and
formal statistical tests for presence of synergistic effects
are available. Implemented methods and tests are described in
the article ``BIGL: Biochemically Intuitive Generalized Loewe
null model for prediction of the expected combined effect
compatible with partial agonism and antagonism'' by Koen Van der
Borght, Annelies Tourny, Rytis Bagdziunas, Olivier Thas, Maxim
Nazarov, Heather Turner, Bie Verbist & Hugo Ceulemans (2017)
<doi:10.1038/s41598-017-18068-5>.

License GPL-3

Depends R (>= 3.5)

Imports ggplot2, MASS, methods, minpack.lm, numDeriv, parallel,
progress, plotly, robustbase, scales, nleqslv, data.table

Suggests knitr, rmarkdown, testthat, shiny, DT

VignetteBuilder knitr, rmarkdown

LazyData true

URL https://github.com/openanalytics/BIGL

BugReports https://github.com/openanalytics/BIGL/issues

Encoding UTF-8

RoxygenNote 7.2.3

1

https://doi.org/10.1038/s41598-017-18068-5
https://github.com/openanalytics/BIGL
https://github.com/openanalytics/BIGL/issues

2 Contents

Repository https://openanalytics.r-universe.dev

RemoteUrl https://github.com/openanalytics/bigl

RemoteRef HEAD

RemoteSha e6e06d93482d23548b29c35ec4bffbc926bfa1f2

Contents
addResids . 3
backscaleResids . 4
Blissindependence . 4
bootConfInt . 5
boxcox.transformation . 7
coef.MarginalFit . 7
col2hex . 8
constructFormula . 8
contour.ResponseSurface . 9
df.residual.MarginalFit . 9
directAntivirals . 10
directAntivirals_ALL . 10
fitMarginals . 11
fitSurface . 12
fitted.MarginalFit . 16
fitted.ResponseSurface . 16
generalizedLoewe . 17
generateData . 17
get.abs_tval . 19
get.summ.data . 20
getCP . 20
getd1d2 . 21
getR . 22
GetStartGuess . 22
getTransformations . 23
harbronLoewe . 24
hsa . 25
initialMarginal . 25
isobologram . 26
L4 . 27
marginalNLS . 27
marginalOptim . 28
maxR . 28
meanR . 31
modelVar . 33
optim.boxcox . 34
outsidePoints . 34
plot.BIGLconfInt . 35
plot.effect-size . 36
plot.MarginalFit . 37

addResids 3

plot.maxR . 37
plot.meanR . 38
plot.ResponseSurface . 39
plotConfInt . 39
plotMeanVarFit . 40
plotResponseSurface . 40
predict.MarginalFit . 43
predictOffAxis . 44
predictResponseSurface . 45
predictVar . 46
print.summary.BIGLconfInt . 46
print.summary.MarginalFit . 47
print.summary.maxR . 47
print.summary.meanR . 48
print.summary.ResponseSurface . 48
residuals.MarginalFit . 49
runBIGL . 49
sampleResids . 50
scaleResids . 50
simulateNull . 51
summary.BIGLconfInt . 52
summary.MarginalFit . 53
summary.maxR . 53
summary.meanR . 54
summary.ResponseSurface . 54
synergy_plot_bycomp . 55
vcov.MarginalFit . 56

Index 57

addResids Add residuals by adding to mean effects

Description

Add residuals by adding to mean effects

Usage

addResids(means, ...)

Arguments

means a vector of means

... passed on to predictVar

4 Blissindependence

backscaleResids Backscale residuals

Description

Backscale residuals

Usage

backscaleResids(scaledResids, ...)

Arguments

scaledResids scaled residuals

... passed on to predictVar

Blissindependence Bliss Independence Model

Description

This function returns fractional response levels for when these are based on Bliss Independence
Model.

Usage

Blissindependence(doseInput, parmInput, ...)

Arguments

doseInput Dose-response dataframe containing "d1" and "d2" columns

parmInput Numeric vector or list with appropriately named parameter inputs. Typically, it
will be coefficients from a MarginalFit object.

... Further arguments that are currently unused

bootConfInt 5

bootConfInt Obtain confidence intervals for the raw effect sizes on every off-axis
point and overall

Description

Obtain confidence intervals for the raw effect sizes on every off-axis point and overall

Usage

bootConfInt(
Total,
idUnique,
bootStraps,
transforms,
respS,
B.B,
method,
CP,
reps,
n1,
cutoff,
R,
fitResult,
bootRS,
data_off,
posEffect = all(Total$effect >= 0),
transFun,
invTransFun,
model,
rescaleResids,
...

)

Arguments

Total data frame with all effects and mean effects

idUnique unique combinations of on-axis points, a character vector

bootStraps precomputed bootstrap objects

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

respS the observed response surface

B.B Number of iterations to use in bootstrapping null distribution for either meanR
or maxR statistics.

6 bootConfInt

method What assumption should be used for the variance of on- and off-axis points. This
argument can take one of the values from c("equal", "model", "unequal").
With the value "equal" as the default. "equal" assumes that both on- and off-
axis points have the same variance, "unequal" estimates a different parameter
for on- and off-axis points and "model" predicts variance based on the average
effect of an off-axis point. If no transformations are used the "model" method
is recommended. If transformations are used, only the "equal" method can be
chosen.

CP Prediction covariance matrix. If not specified, it will be estimated by bootstrap
using B.CP iterations.

reps Numeric vector containing number of replicates for each off-axis dose combina-
tion. If missing, it will be calculated automatically from output of predictOffAxis
function.

n1 the number of off-axis points

cutoff Cut-off to use in maxR procedure for declaring non-additivity (default is 0.95).

R Numeric vector containing mean deviation of predicted response surface from
the observed one at each of the off-axis points. If missing, it will be calculated
automatically from output of predictOffAxis function.

fitResult Monotherapy (on-axis) model fit, e.g. produced by fitMarginals. It has to be a
"MarginalFit" object or a list containing df, sigma, coef, shared_asymptote
and method elements for, respectively, marginal model degrees of freedom,
residual standard deviation, named vector of coefficient estimates, logical value
of whether shared asymptote is imposed and method for estimating marginal
models during bootstrapping (see fitMarginals). If biological and power trans-
formations were used in marginal model estimation, fitResult should contain
transforms elements with these transformations. Alternatively, these can also
be specified via transforms argument.

bootRS a boolean, should bootstrapped response surfaces be used in the calculation of
the confidence intervals?

data_off data frame with off -axis information

posEffect a boolean, are effects restricted to be positive
transFun, invTransFun

the transformation and inverse transformation functions for the variance

model The mean-variance model

rescaleResids a boolean indicating whether to rescale residuals, or else normality of the resid-
uals is assumed.

... Further arguments that will be later passed to generateData function during
bootstrapping

Value

A list with components

offAxis The off-axis bootstrapped confidence intervals

single A mean effect and percentile and studentized boostrap intervals

boxcox.transformation 7

boxcox.transformation Apply two-parameter Box-Cox transformation

Description

Apply two-parameter Box-Cox transformation

Usage

boxcox.transformation(y, lambda, alpha = 0)

Arguments

y Numeric vector

lambda Power parameter in power transform

alpha Shift paramater in 2-parameter power transform. Defaults to 0 which implies a
1-parameter Box-Cox transform.

Value

Power-transformed data

coef.MarginalFit Coefficients from marginal model estimation

Description

Coefficients from marginal model estimation

Usage

S3 method for class 'MarginalFit'
coef(object, ...)

Arguments

object Output of fitMarginals function

... Further arguments

8 constructFormula

col2hex R color to RGB (red/green/blue) conversion.

Description

R color to RGB (red/green/blue) conversion.

Usage

col2hex(cname, alpha = FALSE)

Arguments

cname vector of any of the three kinds of R color specifications, i.e., either a color
name (as listed by colors()), a hexadecimal string of the form "#rrggbb" or
"#rrggbbaa" (see rgb), or a positive integer i meaning palette()[i].

alpha logical value indicating whether the alpha channel (opacity) values should be
returned.

constructFormula Construct a model formula from parameter constraint matrix

Description

For parameter names defined in naming vector, formula is constructed so that consMatrix %*%
naming = consVector is satisfied. Constraint coefficients are normalized and convert into fractions.

Usage

constructFormula(
consMatrix = NULL,
consVector = NULL,
naming = c("h1", "h2", "b", "m1", "m2", "e1", "e2"),
extraVars = c("d1", "d2"),
formulaArgs = c("effect", "fn")

)

Arguments

consMatrix Constraint matrix
consVector Constraint vector
naming Parameter names
extraVars Non-parameter variables used in the formula and function evaluation. These

will be appended to the formula.
formulaArgs Character vector of length two. First element indicates name for the response

variable. Second element indicates name of the function.

contour.ResponseSurface 9

Value

This function returns a model construct appropriate for fitMarginals function. It also separates
variables into those that are free and those which are constrained.

Examples

constM <- rbind(c(0, 0, 1, 0, 0, 0, 0),
c(0, 0, 0, -1, 1, 0, 0))

constV <- c(0.9, 0)
constructFormula(constM, constV)

contour.ResponseSurface

Method for plotting of contours based on maxR statistics

Description

Method for plotting of contours based on maxR statistics

Usage

S3 method for class 'ResponseSurface'
contour(x, colorBy = "maxR", ...)

Arguments

x Output of fitSurface

colorBy String indicating the characteristic to use for coloring ("maxR" or "effect-size").
By default, "maxR".

... Further parameters passed to plot.maxR

df.residual.MarginalFit

Residual degrees of freedom in marginal model estimation

Description

Residual degrees of freedom in marginal model estimation

Usage

S3 method for class 'MarginalFit'
df.residual(object, ...)

10 directAntivirals_ALL

Arguments

object Output of fitMarginals function

... Further arguments

directAntivirals Partial data with combination experiments of direct-acting antivirals

Description

A dataset containing 11 combination experiments of direct-acting antivirals.

Format

A data frame with 3520 rows and 6 variables:

• experiment: ID of experiment (1-11)

• cpd1: name of the first compound (4 different compounds)

• cpd2: name of the second compound (11 different compounds)

• effect: observed effect (cell count)

• d1: dose of the first compound

• d2: dose of the second compound

directAntivirals_ALL Full data with combination experiments of direct-acting antivirals

Description

A dataset containing 11 combination experiments of direct-acting antivirals. This dataset is larger
than directAntivirals dataset as it includes concentrations at levels of 1e6 which can render
plots visually unappealing.

Format

A data frame with 4224 rows and 6 variables:

• experiment: ID of experiment (1-11)

• cpd1: name of the first compound (4 different compounds)

• cpd2: name of the second compound (11 different compounds)

• effect: observed effect (cell count)

• d1: dose of the first compound

• d2: dose of the second compound

fitMarginals 11

fitMarginals Fit two 4-parameter log-logistic functions for a synergy experiment

Description

This function uses dose-response data for two compounds and estimates coefficients for monother-
apy models of both of these compounds such that they share a common baseline. Currently, these
coefficients are estimated by default using a non-linear least squares approximation. Although en-
tire dose-response data can be provided, estimation will subset the part of data where at least one of
the compounds is dosed at zero, i.e. on-axis data.

Usage

fitMarginals(
data,
transforms = NULL,
start = NULL,
constraints = NULL,
fixed = NULL,
method = c("nlslm", "nls", "optim"),
names = NULL,
...

)

Arguments

data Dose-response dataframe. Marginal data will be extracted from it automatically.

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

start Starting parameter values. If not specified, they will be obtained from initialMarginal.

constraints List of constraint matrix and vector which will be passed to constructFormula.
If constraints = NULL, no constraints on parameter estimation will be imposed.

fixed This arguments provides a user-friendly alternative to impose a fixed value for
marginal parameters. It must be a named vector with names contained in c("h1",
"h2", "b", "m1", "m2", "e1", "e2"). For example, fixed = c("m1" = 1, "h1"
= 1) will automatically generate appropriate constraint matrix and vector to set
the maximal response and the Hill coefficient of the first compound to 1. If both
constraints and fixed arguments are passed, then only fixed will be used.

method Which estimation method should be used to obtain the estimates. If method =
"nls", simple non-linear least squares nls will be used. If method = "nlslm"
Levenberg-Marquardt non-linear least squares nlsLM is used instead (default).
If method = "optim", residual sum of squares will be minimized using general
purpose optimization based on Nelder-Mean algorithm in optim. This method
can be noticeably slower than the non-linear least squares methods.

12 fitSurface

names Compound names to be used on the plot labels.

... Further arguments that are passed to the optimizer function, such as lower or
upper (for the "nlslm" method), or control.

Details

Model formula is specified as effect ~ fn(h1, h2, ...) where fn is a hard-coded function which
fits two 4-parameter log-logistic functions simultaneously so that the baseline can be shared. If
transformation functions are provided, fn is consequently adjusted to account for them.

Value

This function returns a MarginalFit object with monotherapy coefficient estimates and diverse
information regarding monotherapy estimation. MarginalFit object is essentially a list with ap-
propriately named elements.

Among these list elements, "coef" is a named vector with parameter estimates. h1 and h2 are Hill’s
slope coefficients for each of the compounds, m1 and m2 are their maximal response levels whereas
b is the shared baseline. Lastly, e1 and e2 are log-transformed EC50 values.

"sigma" is standard deviation of residuals for the estimated monotherapy model and "df" is the
degrees of freedom for the residuals. "vcov" is the variance-covariance matrix of the estimated
parameters.

Return object also contains information regarding data, biological and power transformations used
in this estimation as well as model construct and method of estimation.

Examples

data <- subset(directAntivirals, experiment == 1)
Data must contain d1, d2 and effect columns
transforms <- getTransformations(data)
fitMarginals(data, transforms)

fitSurface Fit response surface model and compute meanR and maxR statistics

Description

This function computes predictions for off-axis dose combinations according to the BIGL or HSA
null model and, if required, computes appropriate meanR and maxR statistics. Function requires as
input dose-response dataframe and output of fitMarginals containing estimates for the monother-
apy model. If transformation functions were used in monotherapy estimation, these should also be
provided.

fitSurface 13

Usage

fitSurface(
data,
fitResult,
transforms = fitResult$transforms,
null_model = c("loewe", "hsa", "bliss", "loewe2"),
effect = "effect",
d1 = "d1",
d2 = "d2",
statistic = c("none", "meanR", "maxR", "both"),
CP = NULL,
B.CP = 50,
B.B = NULL,
nested_bootstrap = FALSE,
error = 4,
sampling_errors = NULL,
wild_bootstrap = FALSE,
cutoff = 0.95,
parallel = FALSE,
progressBar = TRUE,
method = c("equal", "model", "unequal"),
confInt = TRUE,
bootRS = TRUE,
trans = "identity",
rescaleResids = FALSE,
invtrans = switch(trans, identity = "identity", log = "exp"),
newtonRaphson = FALSE,
asymptotes = 2,
bootmethod = method

)

Arguments

data Dose-response dataframe.

fitResult Monotherapy (on-axis) model fit, e.g. produced by fitMarginals. It has to be a
"MarginalFit" object or a list containing df, sigma, coef, shared_asymptote
and method elements for, respectively, marginal model degrees of freedom,
residual standard deviation, named vector of coefficient estimates, logical value
of whether shared asymptote is imposed and method for estimating marginal
models during bootstrapping (see fitMarginals). If biological and power trans-
formations were used in marginal model estimation, fitResult should contain
transforms elements with these transformations. Alternatively, these can also
be specified via transforms argument.

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

14 fitSurface

null_model Specified null model for the expected response surface. Currently, allowed op-
tions are "loewe" for generalized Loewe model, "hsa" for Highest Single Agent
model, "bliss" for Bliss additivity, and "loewe2" for the alternative Loewe
generalization.

effect Name of the response column in the data ("effect")

d1 Name of the column with doses of the first compound ("d1")

d2 Name of the column with doses of the second compound ("d2")

statistic Which statistics should be computed. This argument can take one of the values
from c("none", "meanR", "maxR", "both").

CP Prediction covariance matrix. If not specified, it will be estimated by bootstrap
using B.CP iterations.

B.CP Number of bootstrap iterations to use for CP matrix estimation

B.B Number of iterations to use in bootstrapping null distribution for either meanR
or maxR statistics.

nested_bootstrap

When statistics are calculated, if nested_bootstrap = TRUE, CP matrix is recal-
culated at each bootstrap iteration of B.B using B.CP iterations. Using such
nested bootstrap may however significantly increase computational time. If
nested_bootstrap = FALSE, CP bootstrapped data reuses CP matrix calculated
from the original data.

error Type of error for resampling in the bootstrapping procedure. This argument
will be passed to generateData. If error = 4 (default), the error terms for
generating distribution of the null will be resampled from the vector specified in
sampling_errors. If error = 1, normal errors are added. If error = 2, errors
are sampled from a mixture of two normal distributions. If error = 3, errors are
generated from a rescaled chi-square distribution.

sampling_errors

Sampling vector to resample errors from. Used only if error is 4 and is passed
as argument to generateData. If sampling_errors = NULL (default), mean
residuals at off-axis points between observed and predicted response are taken.

wild_bootstrap Whether special bootstrap to correct for heteroskedasticity should be used. If
wild_bootstrap = TRUE, errors are generated from sampling_errors multi-
plied by a random variable following Rademacher distribution. Argument is
used only if error = 4.

cutoff Cut-off to use in maxR procedure for declaring non-additivity (default is 0.95).

parallel Whether parallel computing should be used for bootstrap. This parameter can
take either integer value to specify the number of threads to be used or logical
TRUE/FALSE. If parallel = TRUE, then max(1, detectCores()-1) is set to be
the number of threads. If parallel = FALSE, then a single thread is used and
cluster object is not created.

progressBar A boolean, should progress of bootstraps be shown?

method What assumption should be used for the variance of on- and off-axis points. This
argument can take one of the values from c("equal", "model", "unequal").
With the value "equal" as the default. "equal" assumes that both on- and off-
axis points have the same variance, "unequal" estimates a different parameter

fitSurface 15

for on- and off-axis points and "model" predicts variance based on the average
effect of an off-axis point. If no transformations are used the "model" method
is recommended. If transformations are used, only the "equal" method can be
chosen.

confInt a boolean, should confidence intervals be returned?

bootRS a boolean, should bootstrapped response surfaces be used in the calculation of
the confidence intervals?

trans, invtrans the transformation function for the variance and its inverse, possibly as strings

rescaleResids a boolean indicating whether to rescale residuals, or else normality of the resid-
uals is assumed.

newtonRaphson A boolean, should Newton-Raphson be used to find Loewe response surfaces?
May be faster but also less stable to switch on

asymptotes Number of asymptotes. It can be either 1 as in standard Loewe model or 2 as in
generalized Loewe model.

bootmethod The resampling method to be used in the bootstraps. Defaults to the same as
method

Details

Please see the example vignette vignette("analysis", package = "BIGL") and the report "Lack
of fit test for detecting synergy" included in the papers folder for further details on the test statistics
used: system.file("papers", "newStatistics.pdf", package = "BIGL")

Value

This function returns a ResponseSurface object with estimates of the predicted surface. ResponseSurface
object is essentially a list with appropriately named elements.

Elements of the list include input data, monotherapy model coefficients and transformation func-
tions, null model used to construct the surface as well as estimated CP matrix, occupancy level at
each dose combination according to the generalized Loewe model and "offAxisTable" element
which contains observed and predicted effects as well as estimated z-scores for each dose combina-
tion.

If statistical testing was done, returned object contains "meanR" and "maxR" elements with output
from meanR and maxR respectively.

Examples

Not run:
data <- subset(directAntivirals, experiment == 4)
Data should contain d1, d2 and effect columns
transforms <- list("PowerT" = function(x, args) with(args, log(x)),

"InvPowerT" = function(y, args) with(args, exp(y)),
"BiolT" = function(x, args) with(args, N0 * exp(x * time.hours)),
"InvBiolT" = function(y, args) with(args, 1/time.hours * log(y/N0)),
"compositeArgs" = list(N0 = 1, time.hours = 72))

fitResult <- fitMarginals(data, transforms)
surf <- fitSurface(data, fitResult, statistic = "meanR")

16 fitted.ResponseSurface

summary(surf)

End(Not run)

fitted.MarginalFit Compute fitted values from monotherapy estimation

Description

Compute fitted values from monotherapy estimation

Usage

S3 method for class 'MarginalFit'
fitted(object, ...)

Arguments

object Output of fitMarginals function

... Further arguments

fitted.ResponseSurface

Predicted values of the response surface according to the given null
model

Description

Predicted values of the response surface according to the given null model

Usage

S3 method for class 'ResponseSurface'
fitted(object, ...)

Arguments

object Output of fitSurface

... Further parameters

generalizedLoewe 17

generalizedLoewe Compute combined predicted response from drug doses according to
standard or generalized Loewe model.

Description

Compute combined predicted response from drug doses according to standard or generalized Loewe
model.

Usage

generalizedLoewe(
doseInput,
parmInput,
asymptotes = 2,
startvalues = NULL,
newtonRaphson = FALSE,
...

)

Arguments

doseInput Dose-response dataframe containing "d1" and "d2" columns

parmInput Numeric vector or list with appropriately named parameter inputs. Typically, it
will be coefficients from a MarginalFit object.

asymptotes Number of asymptotes. It can be either 1 as in standard Loewe model or 2 as in
generalized Loewe model.

startvalues Starting values for the non-linear equation, from the observed data

newtonRaphson a boolean, is Newton raphson used for finding the response surface? May be
faster but also less stable

... Further arguments that are currently unused

generateData Generate data from parameters of marginal monotherapy model

Description

This function is used to generate data for bootstrapping of the null distribution for various estimates.
Optional arguments such as specific choice of sampling vector or corrections for heteroskedasticity
can be specified in the function arguments.

18 generateData

Usage

generateData(
pars,
sigma,
data = NULL,
transforms = NULL,
null_model = c("loewe", "hsa", "bliss", "loewe2"),
error = 1,
sampling_errors = NULL,
means = NULL,
model = NULL,
method = "equal",
wild_bootstrap = FALSE,
rescaleResids,
invTransFun,
newtonRaphson = FALSE,
bootmethod = method,
...

)

Arguments

pars Coefficients of the marginal model along with their appropriate naming scheme.
These will typically be estimated using fitMarginals. Futhermore, pars can
simply be a MarginalFit object and transforms object will be automatically
extracted.

sigma Standard deviation to use for randomly generated error terms. This argument is
unused if error = 4 so that sampling error vector is provided.

data Data frame with dose columns ("d1", "d2") to generate the effect for. Only
"d1" and "d2" columns of the dose-response dataframe should be passed to this
argument. "effect" column should not be passed and if it is, the column will
be replaced by simulated data.

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

null_model Specified null model for the expected response surface. Currently, allowed op-
tions are "loewe" for generalized Loewe model, "hsa" for Highest Single Agent
model, "bliss" for Bliss additivity, and "loewe2" for the alternative Loewe
generalization.

error Type of error for resampling. error = 1 (Default) adds normal errors to the
simulated effects, error = 2 adds errors sampled from a mixture of two normal
distributions, error = 3 generates errors from a rescaled chi-square distribution.
error = 4 will use bootstrap. Choosing this option, the error terms will be re-
sampled from the vector specified in sampling_errors.

sampling_errors

Sampling vector to resample errors from. Used only if error = 4.

get.abs_tval 19

means The vector of mean values of the response surface, for variance modelling

model The mean-variance model

method What assumption should be used for the variance of on- and off-axis points. This
argument can take one of the values from c("equal", "model", "unequal").
With the value "equal" as the default. "equal" assumes that both on- and off-
axis points have the same variance, "unequal" estimates a different parameter
for on- and off-axis points and "model" predicts variance based on the average
effect of an off-axis point. If no transformations are used the "model" method
is recommended. If transformations are used, only the "equal" method can be
chosen.

wild_bootstrap Whether special bootstrap to correct for heteroskedasticity should be used. If
wild_bootstrap = TRUE, errors are generated from sampling_errors multi-
plied by a random variable following Rademacher distribution. Argument is
used only if error = 4.

rescaleResids a boolean indicating whether to rescale residuals, or else normality of the resid-
uals is assumed.

invTransFun the inverse transformation function, back to the variance domain

newtonRaphson A boolean, should Newton-Raphson be used to find Loewe response surfaces?
May be faster but also less stable to switch on

bootmethod The resampling method to be used in the bootstraps. Defaults to the same as
method

... Further arguments

Value

Dose-response dataframe with generated data including "effect" as well as "d1" and "d2" columns.

Examples

coefs <- c("h1" = 1, "h2" = 1.5, "b" = 0,
"m1" = 1, "m2" = 2, "e1" = 0.5, "e2" = 0.1)

Dose levels are set to be integers from 0 to 10
generateData(coefs, sigma = 1)

Dose levels are taken from existing dataset with d1 and d2 columns
data <- subset(directAntivirals, experiment == 1)
generateData(data = data[, c("d1", "d2")], pars = coefs, sigma = 1)

get.abs_tval Return absolute t-value, used in optimization call in optim.boxcox

Description

Return absolute t-value, used in optimization call in optim.boxcox

20 getCP

Usage

get.abs_tval(value, fac, lambda, zero.add2 = 0)

Arguments

value data

fac factor

lambda box-cox parameter

zero.add2 2nd box-cox parameter

get.summ.data Summarize data by factor

Description

Summarize data by factor

Usage

get.summ.data(value, fac)

Arguments

value data to sumamrize

fac factor to summarize by

getCP Estimate CP matrix from bootstraps

Description

This function is generally called from within fitSurface.

Usage

getCP(bootStraps, null_model, transforms, sigma0, doseGrid)

getd1d2 21

Arguments

bootStraps the bootstraps carried out already

null_model Specified null model for the expected response surface. Currently, allowed op-
tions are "loewe" for generalized Loewe model, "hsa" for Highest Single Agent
model, "bliss" for Bliss additivity, and "loewe2" for the alternative Loewe
generalization.

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

sigma0 standard deviation of the null model on the real data

doseGrid a grid of dose combinations

Value

Estimated CP matrix

getd1d2 A function to get the d1d2 identifier

Description

A function to get the d1d2 identifier

Usage

getd1d2(dat)

Arguments

dat the data frame containing d1 and d2 entries

Value

a vector of d1d2 identifiers

22 GetStartGuess

getR Helper functions for the test statistics

Description

Helper functions for the test statistics

Usage

getR(data, idUnique, transforms, respS)

Arguments

data the datasets

idUnique id of unique off axis points

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

respS the evaluated response surface

GetStartGuess Estimate initial values for dose-response curve fit

Description

Estimate initial values for dose-response curve fit

Usage

GetStartGuess(df, transforms = NULL)

Arguments

df Dose-response dataframe containing "dose" and "effect" columns

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

getTransformations 23

getTransformations Return a list with transformation functions

Description

This function takes in response data from a dose-response model and attempts to find an optimal
Box-Cox power transform based on optim.boxcox function. It then returns a list of transformation
functions which contains this power transform and its inverse which can be subsequently used in
fitMarginals and fitSurface.

Usage

getTransformations(data, shift = FALSE, args = list(N0 = 1, time.hours = 1))

Arguments

data Dose-response dataframe.

shift If TRUE or is a numeric value, then a two-parameter Box-Cox transformation is
assumed. This parameter will be passed on to optim.boxcox function.

args List with elements that are added to the list of transformation function and which
can be used by these functions. In particular, this list should be of type args =
list("N0" = 1, "time.hours" = 1) where N0 and time.hours are arguments
used for the biological transform.

Details

Additionally, returned list contains biological transform and its inverse based on a simple expo-
nential growth model, especially useful when response data is provided in cell counts. User can
additionally provide arguments for these biological transforms where N0 stands for initial cell count
and time.hours indicates number in hours after which response data was measured.

getTransformations relies on optim.boxcox to obtain the optimal Box-Cox transformation pa-
rameters. However, optim.boxcox optimizes for the power parameter only within the interval (0.1,
0.9). Hence, if obtained power parameter is close to 0.1, then a logarithmic transformation is applied
instead.

Value

This function returns a list with transformation functions. These include power transformation
("PowerT") and its inverse ("InvPowerT") as well as biological transformation ("BiolT") and its
inverse ("InvBiolT").

Power transformation is a 1-parameter Box-Cox transformation. If shift = TRUE, then power trans-
formation is a 2-parameter Box-Cox transformation. Optimal values for power and shift operators
are selected by means of optim.boxcox function.

Biological transformation y = N0 * exp(x * t) where N0 is the initial cell count and t is the incuba-
tion time. If response/effect variable (y) is given in terms of cell counts, biological transformation
ensures that modelisation is done for the growth rate instead (x).

24 harbronLoewe

Returned list also contains "compositeArgs" elements shared by all the transformation functions.
These arguments include initial cell count ("N0") and incubation time ("time.hours").

Examples

data <- subset(directAntivirals, experiment == 1)
Data must contain d1, d2 and effect columns
getTransformations(data)

harbronLoewe Alternative Loewe generalization

Description

Alternative Loewe generalization

Usage

harbronLoewe(
doseInput,
parmInput,
asymptotes = 2,
startvalues = NULL,
newtonRaphson = FALSE,
...

)

Arguments

doseInput Dose-response dataframe containing "d1" and "d2" columns

parmInput Numeric vector or list with appropriately named parameter inputs. Typically, it
will be coefficients from a MarginalFit object.

asymptotes Number of asymptotes. It can be either 1 as in standard Loewe model or 2 as in
generalized Loewe model.

startvalues Starting values for the non-linear equation, from the observed data

newtonRaphson a boolean, is Newton raphson used for finding the response surface? May be
faster but also less stable

... Further arguments that are currently unused

hsa 25

hsa Highest Single Agent model

Description

This function returns response levels for when these are based on Highest Single Agent (HSA)
model.

Usage

hsa(doseInput, parmInput, ...)

Arguments

doseInput Dose-response dataframe containing "d1" and "d2" columns

parmInput Numeric vector or list with appropriately named parameter inputs. Typically, it
will be coefficients from a MarginalFit object.

... Further arguments that are currently unused

initialMarginal Estimate initial values for fitting marginal dose-response curves

Description

This is a wrapper function which, when a dose-response dataframe is provided, returns start value
estimates for both compounds that could be supplied to fitMarginals function. This function is
also used by fitMarginals if no initials values were supplied.

Usage

initialMarginal(data, transforms = NULL, ...)

Arguments

data Dose-response dataframe. Marginal data will be extracted from it automatically.

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

... Further parameters that are currently not used

Details

Note that this function returns e1 and 2 which are log-transformed inflection points for respective
compounds.

26 isobologram

Value

Named vector with parameter estimates. Parameter names are consistent with parameter names
in fitMarginals. h1 and h2 are Hill’s slope coefficients for each of the compounds, m1 and m2
are their maximal response levels whereas b is the shared baseline. Lastly, e1 and e2 are log-
transformed EC50 values.

Note

Returns starting value for e = log(EC50).

Examples

data <- subset(directAntivirals, experiment == 1)
Data must contain d1, d2 and effect columns
transforms <- getTransformations(data)
initialMarginal(data, transforms)

isobologram Isobologram of the response surface predicted by the null model

Description

If transformation functions are used, then the isobologram response levels will be plotted on the
transformed scale.

Usage

isobologram(x, grid.len = 100, logScale = TRUE, ...)

Arguments

x Output of fitSurface

grid.len Number of concentrations to plot for each compound in the contour plot. An
evenly spaced grid of doses will be generated for each compound given its re-
spective observed minimum and maximum doses. Note that grid.len^2 com-
putations will be needed later so this number should stay reasonably low.

logScale If logScale = TRUE, then grid of doses is evenly spaced in the logarithmic scale.

... Further parameters that are not used at this moment.

L4 27

L4 4-parameter logistic dose-response function

Description

4-parameter logistic dose-response function

Usage

L4(dose, b, L, U, logEC50)

Arguments

dose Dose level
b Hill’s coefficient (slope of the curve)
L Baseline effect (at zero dose)
U Asymptote effect (at infinite dose)
logEC50 Point of inflection (in logarithmic terms)

marginalNLS Fit two 4-parameter log-logistic functions with non-linear least
squares

Description

This function does not automatically extract marginal data and requires model input obtained from
constructFormula.

Usage

marginalNLS(data, transforms = NULL, start, model, nlsfn = nls, ...)

Arguments

data Dose-response dataframe. Marginal data will be extracted from it automatically.
transforms Transformation functions. If non-null, transforms is a list containing 5 el-

ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

start Starting parameter values. If not specified, they will be obtained from initialMarginal.
model List with model parameters. Typically, this is an output from constructFormula.
nlsfn Non-linear least-squares optimizer function
... Further arguments that are passed to the optimizer function, such as lower or

upper (for the "nlslm" method), or control.

28 maxR

marginalOptim Fit two 4-parameter log-logistic functions with common baseline

Description

This function is an alternative to non-linear least squares and provides optimization framework
with optim function. It is however noticeably slower than NLS methods and can be especially time
consuming in large datasets, in particular if bootstrap statistics are calculated.

Usage

marginalOptim(data, transforms = NULL, start, model, ...)

Arguments

data Dose-response dataframe. Marginal data will be extracted from it automatically.

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

start Starting parameter values. If not specified, they will be obtained from initialMarginal.

model List with model parameters. Typically, this is an output from constructFormula.

... Further parameters passed to optim function

Value

Variance-covariance matrix which is returned by optim is based on the fact that minimization of
sum-of-squared residuals leads essentially to a maximum likelihood estimator and so variance-
covariance matrix can be estimated using inverse Hessian evaluated at the optimal parameters. In
some cases, so obtained variance-covariance matrix might not be positive-definite which probably
means that estimates are unstable because of either a poor choice of initial values or poor properties
of the data itself.

maxR Compute maxR statistic for each off-axis dose combination

Description

maxR computes maxR statistics for each off-axis dose combination given the data provided. It
provides a summary with results indicating whether a given point is estimated to be synergetic or
antagonistic. These can be based either on normal approximation or a fully bootstrapped distribution
of the statistics.

maxR 29

Usage

maxR(
data_off,
fitResult,
transforms = fitResult$transforms,
null_model = c("loewe", "hsa", "bliss", "loewe2"),
R,
CP,
reps,
nested_bootstrap = FALSE,
B.B = NULL,
cutoff = 0.95,
cl = NULL,
B.CP = NULL,
method = c("equal", "model", "unequal"),
bootStraps,
idUnique,
n1,
doseGridOff,
transFun,
invTransFun,
...

)

Arguments

data_off data frame with off -axis information

fitResult Monotherapy (on-axis) model fit, e.g. produced by fitMarginals. It has to be a
"MarginalFit" object or a list containing df, sigma, coef, shared_asymptote
and method elements for, respectively, marginal model degrees of freedom,
residual standard deviation, named vector of coefficient estimates, logical value
of whether shared asymptote is imposed and method for estimating marginal
models during bootstrapping (see fitMarginals). If biological and power trans-
formations were used in marginal model estimation, fitResult should contain
transforms elements with these transformations. Alternatively, these can also
be specified via transforms argument.

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

null_model Specified null model for the expected response surface. Currently, allowed op-
tions are "loewe" for generalized Loewe model, "hsa" for Highest Single Agent
model, "bliss" for Bliss additivity, and "loewe2" for the alternative Loewe
generalization.

R Numeric vector containing mean deviation of predicted response surface from
the observed one at each of the off-axis points. If missing, it will be calculated
automatically from output of predictOffAxis function.

30 maxR

CP Prediction covariance matrix. If not specified, it will be estimated by bootstrap
using B.CP iterations.

reps Numeric vector containing number of replicates for each off-axis dose combina-
tion. If missing, it will be calculated automatically from output of predictOffAxis
function.

nested_bootstrap

When statistics are calculated, if nested_bootstrap = TRUE, CP matrix is recal-
culated at each bootstrap iteration of B.B using B.CP iterations. Using such
nested bootstrap may however significantly increase computational time. If
nested_bootstrap = FALSE, CP bootstrapped data reuses CP matrix calculated
from the original data.

B.B Number of iterations to use in bootstrapping null distribution for either meanR
or maxR statistics.

cutoff Cut-off to use in maxR procedure for declaring non-additivity (default is 0.95).

cl If parallel computations are desired, cl should be a cluster object created by
makeCluster. If parallel computing is active, progress reporting messages are
not necessarily ordered as it should be expected.

B.CP Number of bootstrap iterations to use for CP matrix estimation

method What assumption should be used for the variance of on- and off-axis points. This
argument can take one of the values from c("equal", "model", "unequal").
With the value "equal" as the default. "equal" assumes that both on- and off-
axis points have the same variance, "unequal" estimates a different parameter
for on- and off-axis points and "model" predicts variance based on the average
effect of an off-axis point. If no transformations are used the "model" method
is recommended. If transformations are used, only the "equal" method can be
chosen.

bootStraps precomputed bootstrap objects

idUnique unique combinations of on-axis points, a character vector

n1 the number of off-axis points

doseGridOff dose grid for off-axis points
transFun, invTransFun

the transformation and inverse transformation functions for the variance

... Further arguments that will be later passed to generateData function during
bootstrapping

Value

This function returns a maxR object with estimates for the maxR statistical test. maxR object is
essentially a list with appropriately named elements.

In particular, maxR object contains "Ymean" element which is a summary table of maxR test re-
sults for each dose combination. This table contains mean deviation from the predicted surface,
normalized deviation ("absR") as well as a statistical call whether this deviation is significant. Dis-
tributional information on which these calls are made can be retrieved from the attributes of the
"Ymean" dataframe.

meanR 31

Also, maxR object contains "Call" element which indicates the general direction of the deviation
of the observed surface from the null. This call is based on the strongest local deviation in the
"Ymean" table. 4 values are available here: "Syn", "Ant", "None", "Undefined". If one compound
acts as an agonist while another one is an antagonist, then a deviation from the null is classified as
"Undefined". If both compounds act in the same direction, then a stronger than individual effect is
classified as synergy while a weaker effect would be classified as antagonism.

meanR Compute meanR statistic for the estimated model

Description

meanR computes the meanR statistic for the provided model and returns the computed F-statistic
and the estimated p-value. p-value can be calculated either by assuming an exact distribution or
using bootstrapping procedure. In the latter case, null distribution of bootstrapped F-statistics is
also returned.

Usage

meanR(
data_off,
fitResult,
transforms = fitResult$transforms,
null_model = c("loewe", "hsa", "bliss", "loewe2"),
R,
CP,
reps,
nested_bootstrap = FALSE,
B.B = NULL,
B.CP = NULL,
cl = NULL,
method = c("equal", "model", "unequal"),
bootStraps,
paramsBootstrap,
idUnique,
n1,
transFun,
invTransFun,
...

)

Arguments

data_off data frame with off -axis information

fitResult Monotherapy (on-axis) model fit, e.g. produced by fitMarginals. It has to be a
"MarginalFit" object or a list containing df, sigma, coef, shared_asymptote
and method elements for, respectively, marginal model degrees of freedom,

32 meanR

residual standard deviation, named vector of coefficient estimates, logical value
of whether shared asymptote is imposed and method for estimating marginal
models during bootstrapping (see fitMarginals). If biological and power trans-
formations were used in marginal model estimation, fitResult should contain
transforms elements with these transformations. Alternatively, these can also
be specified via transforms argument.

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

null_model Specified null model for the expected response surface. Currently, allowed op-
tions are "loewe" for generalized Loewe model, "hsa" for Highest Single Agent
model, "bliss" for Bliss additivity, and "loewe2" for the alternative Loewe
generalization.

R Numeric vector containing mean deviation of predicted response surface from
the observed one at each of the off-axis points. If missing, it will be calculated
automatically from output of predictOffAxis function.

CP Matrix which is part of covariance matrix for the R argument

reps Numeric vector containing number of replicates for each off-axis dose combina-
tion. If missing, it will be calculated automatically from output of predictOffAxis
function.

nested_bootstrap

When statistics are calculated, if nested_bootstrap = TRUE, CP matrix is recal-
culated at each bootstrap iteration of B.B using B.CP iterations. Using such
nested bootstrap may however significantly increase computational time. If
nested_bootstrap = FALSE, CP bootstrapped data reuses CP matrix calculated
from the original data.

B.B Number of iterations to use in bootstrapping null distribution for either meanR
or maxR statistics.

B.CP Number of bootstrap iterations to use for CP matrix estimation

cl If parallel computations are desired, cl should be a cluster object created by
makeCluster. If parallel computing is active, progress reporting messages are
not necessarily ordered as it should be expected.

method What assumption should be used for the variance of on- and off-axis points. This
argument can take one of the values from c("equal", "model", "unequal").
With the value "equal" as the default. "equal" assumes that both on- and off-
axis points have the same variance, "unequal" estimates a different parameter
for on- and off-axis points and "model" predicts variance based on the average
effect of an off-axis point. If no transformations are used the "model" method
is recommended. If transformations are used, only the "equal" method can be
chosen.

bootStraps precomputed bootstrap objects
paramsBootstrap

parameters for the nested bootstrap

idUnique unique combinations of on-axis points, a character vector

modelVar 33

n1 the number of off-axis points

transFun, invTransFun
the transformation and inverse transformation functions for the variance

... Further arguments that will be later passed to generateData function during
bootstrapping

Value

This function returns a meanR object with estimates for the meanR statistical test. meanR object is
essentially a list with appropriately named elements.

meanR object list includes notably the calculated F-statistic, p-value and degrees of freedom ("n1"
and "df0" respectively) used to find the critical value of the F-distribution under the null.

If meanR test is run with bootstrapping, then p-value estimate is based on bootstrapped null distri-
bution of test statistic and an additional element "FDist" (of class "ecdf") is returned.

modelVar Calculate model variance, assuming variance increases linearly with
mean

Description

Calculate model variance, assuming variance increases linearly with mean

Usage

modelVar(dat_off, transFun, invTransFun)

Arguments

dat_off off-axis points data

transFun, invTransFun
the transformation and inverse transformation functions for the variance

Value

the predicted model variance

34 outsidePoints

optim.boxcox Find optimal Box-Cox transformation parameters

Description

Find optimal Box-Cox transformation parameters

Usage

optim.boxcox(value, fac, shift = FALSE)

Arguments

value Response variable in the data, e.g. "effect" column
fac Factor indicating groups of replicates, e.g. interaction(d1,d2)
shift Whether to use 2-parameter Box-Cox transformation. Input may be TRUE/FALSE

or a numeric value indicating the shift parameter to use. If FALSE, shift parame-
ter is set to zero.

Value

Numeric vector with power and shift parameter in that order.

Examples

data <- subset(directAntivirals, experiment == 1)
optim.boxcox(data$effect, interaction(data$d1, data$d2))

outsidePoints List non-additive points

Description

List all points with corresponding p-values declared non-additive by the maxR statistical test.

Usage

outsidePoints(maxR, B = 10000)

Arguments

maxR maxR statistics table returned by Ymean component from the output of maxR
function. This can also be "maxR" element in the output of fitSurface func-
tion.

B Iterations to use for the distribution of the maxR statistic. This is only used if
Ymean dataframe does not have a "distr" attribute attached as is normally done
when using fitSurface or maxR function.

plot.BIGLconfInt 35

Value

Returns a dataframe listing only dose combinations that exhibit significant deviations from the
expected response surface.

Examples

data <- subset(directAntivirals, experiment == 2)
Data must contain d1, d2 and effect columns
fitResult <- fitMarginals(data)
surf <- fitSurface(data, fitResult, statistic = "maxR")
outsidePoints(surf$maxR$Ymean)

plot.BIGLconfInt Plot confidence intervals in a contour plot

Description

Plot confidence intervals in a contour plot

Usage

S3 method for class 'BIGLconfInt'
plot(x, color = "effect-size", showAll = TRUE, digits = 3, xlab, ylab, ...)

Arguments

x off axis confidence intervals, a data frame

color analysis with which to colour cells, either effect-size or maxR

showAll show all intervals in the plot or only significant ones, logical defaulting to TRUE

digits Numeric value indicating the number of digits used for numeric values

xlab String for the x axis label

ylab String for the y axis label

... additional arguments, currently ignored

Note

written after the contour() function in the drugCombo package

36 plot.effect-size

plot.effect-size Plot of effect-size object

Description

Plot of effect-size object

Usage

S3 method for class '`effect-size`'
plot(
x,
main = "Contour plot for effect size",
xlab = "Dose (Compound 1)",
ylab = "Dose (Compound 2)",
colorPalette,
logScale = TRUE,
zTransform = function(z) {

z
},
digits,
digitsFunc,
...

)

Arguments

x Object of class effect-size.

main The main title (on top) using font, size (character expansion) and color par(c("font.main",
"cex.main", "col.main")).

xlab X axis label using font, size and color par(c("font.lab", "cex.lab", "col.lab")).

ylab Y axis label, same font attributes as xlab.

colorPalette Vector of color values

logScale logScale

zTransform zTransform

digits Numeric value indicating the number of digits used for numeric values. Whether
digitsFunc is provided, this will be ignored.

digitsFunc Function to be applied to numeric values like doses. This expects a single pa-
rameter.

... Further arguments that are passed to format function for formatting of axis
labels

plot.MarginalFit 37

plot.MarginalFit Plot monotherapy curve estimates

Description

Plot monotherapy curve estimates

Usage

S3 method for class 'MarginalFit'
plot(x, ncol = 2, logScale = TRUE, smooth = TRUE, dataScale = FALSE, ...)

Arguments

x Output of fitMarginals function or a "MarginalFit" object

ncol Number of plots per row

logScale Whether x-axis should be plotted on a logarithmic scale

smooth Whether to draw a smooth fitted curve (deafult), or line segments connecting
predicted points only

dataScale Whether to draw plot on original data scale in case when transformations were
used for fitting. Default (FALSE) is to plot on the coef(x) scale

... Further arguments

Value

Returns a ggplot object. It can be consequently modified by using standard operations on ggplot
objects (if ggplot2 package is loaded).

plot.maxR Plot of maxR object

Description

Plot of maxR object

Usage

S3 method for class 'maxR'
plot(
x,
main = "Contour plot for maxR",
xlab = "Dose (Compound 1)",
ylab = "Dose (Compound 2)",
colorPalette = c("blue", "white", "red"),

38 plot.meanR

logScale = TRUE,
zTransform = function(z) {

z
},
plevels = c(0.7, 0.8, 0.9, 0.95, 0.99, 0.999),
cutoff = max(plevels),
maxshow = NULL,
...

)

Arguments

x Output of maxR. This can also be "maxR" element in the output of fitSurface.

main Fixed non-moving title for the 3D plot

xlab X axis label using font, size and color par(c("font.lab", "cex.lab", "col.lab")).

ylab Y axis label, same font attributes as xlab.

colorPalette Vector of color names for surface

logScale Draw doses on log-scale (setting zeroes to be finite constant)

zTransform Optional transformation function for z-axis. By default, identity function is
used.

plevels Probability levels used to generate a color scale

cutoff Probability cutoff to use for range of colors

maxshow Forced value for range of colors

... Further arguments that are passed to format function for formatting of axis
labels

plot.meanR Plot bootstrapped cumulative distribution function of meanR null dis-
tribution

Description

Plot bootstrapped cumulative distribution function of meanR null distribution

Usage

S3 method for class 'meanR'
plot(x, ...)

Arguments

x Output from meanR

... Further arguments

plot.ResponseSurface 39

plot.ResponseSurface Method for plotting response surface objects

Description

Method for plotting response surface objects

Usage

S3 method for class 'ResponseSurface'
plot(x, color = c("z-score", "maxR", "occupancy", "effect-size"), ...)

Arguments

x Output of fitSurface

color Character indicating on what values surface coloring will be based.
If color = "z-score", surface coloring will be based on median of standartized
off-axis Z-scores. Median function can be replaced by other function using an
optional colorfun argument which will be passed to plotResponseSurface.
Color breaks are determined here by standard deviation of off-axis Z-scores.
For color = "maxR", coloring will be based on values of maxR statistic and
the quantile of its distribution (bootstrapped or not). If color = "occupancy",
coloring will be based on calculated occupancy rate for the respective dose com-
bination. If color = "effect-size", coloring will be based on effect size for
the respective dose combination.

... Further parameters passed to plotResponseSurface. colorBy argument in this
method is computed automatically and thus cannot be passed to plotResponseSurface.

plotConfInt Plot confidence intervals from BIGL object in a contour plot

Description

Plot confidence intervals from BIGL object in a contour plot

Usage

plotConfInt(BIGLobj, ...)

Arguments

BIGLobj Output from fitSurface

... passed on to plot.BIGLconfInt

40 plotResponseSurface

plotMeanVarFit Make a mean-variance plot

Description

Make a mean-variance plot

Usage

plotMeanVarFit(
data,
trans = "identity",
invtrans = switch(trans, identity = "identity", log = "exp"),
main = paste(switch(trans, identity = "No", log = "log"), "transformation"),
log = switch(trans, identity = "", log = "y", ""),
...

)

Arguments

data a dataset or matrix with d1, d2 and effect column

trans, invtrans the transformation function for the variance and its inverse, possibly as strings

main the title of the plot

log log-transform of the axes, as in plot()

... passed on to plot()

Details

This is a crucial graphical check for deciding on the

Value

Plots the mean-variance trend

plotResponseSurface Plot response surface

Description

Plot the 3-dimensional response surface predicted by one of the null models. This plot allows for a
visual comparison between the null model prediction and observed points. This function is mainly
used as the workhorse of plot.ResponseSurface method.

plotResponseSurface 41

Usage

plotResponseSurface(
data,
fitResult = NULL,
transforms = fitResult$transforms,
predSurface = NULL,
null_model = c("loewe", "hsa", "bliss", "loewe2"),
colorPalette = c("red", "grey70", "blue"),
colorPaletteNA = "grey70",
colorBy = "none",
addPoints = TRUE,
colorPoints = c("black", "sandybrown", "brown", "white"),
breaks,
radius = 4,
logScale = TRUE,
colorfun = median,
zTransform = function(x) x,
add = FALSE,
main = "",
legend = FALSE,
xat = "actual",
yat = "actual",
plotfun = NULL,
gradient = TRUE,
width = 800,
height = 800,
title = "",
digitsFunc = function(x) {

x
},
...

)

Arguments

data Object "data" from the output of fitSurface

fitResult Object "fitResult" from the output of fitSurface

transforms Object "transforms" from the output of fitSurface

predSurface Vector of all predicted responses based on expand.grid(uniqueDoses). If not
supplied, it will be computed with predictOffAxis function.

null_model If predSurface is not supplied, it is computed using one of the available null
models, i.e. "loewe", "hsa", "bliss" and "loewe2". See also fitSurface.

colorPalette Vector of color names for surface

colorPaletteNA Color used in the matrix of colours when the combination of doses doesn’t exist
(NA)

42 plotResponseSurface

colorBy This parameter determines values on which coloring is based for the 3-dimensional
surface. If matrix or a data frame with d1 and d2 columns is supplied, dose com-
binations from colorBy will be matched automatically to the appropriate dose
combinations in data. Unmatched dose combinations will be set to 0. This is
especially useful for plotting results for off-axis estimates only, e.g. off-axis Z-
scores or maxR test statistics. If colorBy = "colors", surface will be colored
using colors in colorPalette argument.

addPoints Boolean whether the dose points should be included

colorPoints Colors for off-axis and on-axis points. Character vector of length four with
colors for 1) off-axis points; 2) on-axis points of the first drug (i.e. second drug
is dosed at zero); 3) on-axis points of the second drug; 4) on-axis points where
both drugs are dosed at zero.

breaks Numeric vector with numerical breaks. To be used in conjunction with colorPalette
argument. If named, the labels will be displayed in the legend

radius Size of spheres (default is 4)

logScale Draw doses on log-scale (setting zeroes to be finite constant)

colorfun If replicates in colorBy variable are present, these will be aggregated using
colorfun function. This can also be a custom function returning a scalar.

zTransform Optional transformation function for z-axis. By default, identity function is
used.

add (deprecated) Add the predicted response surface to an existing plot. Will not
draw any points, just the surface. Must be called after another call to plotResponseSurface.

main Fixed non-moving title for the 3D plot

legend Whether legend should be added (default FALSE)

xat x-axis ticks: "pretty", "actual" or a numeric vector

yat y-axis ticks: "pretty", "actual" or a numeric vector

plotfun If replicates for dose combinations in data are available, points can be aggre-
gated using plotfun function. Typically, it will be mean, median, min or max
but a custom-defined function returning a scalar from a vector is also possible.

gradient Boolean indicating whether colours should be interpolated between breaks (de-
fault TRUE). If FALSE, colorPalette must contain length(breaks)-1 colours

width Width in pixels (optional, defaults to 800px).

height Height in pixels (optional, defaults to 800px).

title String title (default "")

digitsFunc Function to be applied to the axis values

... Further arguments to format axis labels

Value

Plotly plot

predict.MarginalFit 43

Examples

Not run:
data <- subset(directAntivirals, experiment == 1)
Data must contain d1, d2 and effect columns
fitResult <- fitMarginals(data)
data_mean <- aggregate(effect ~ d1 + d2, data = data[, c("d1", "d2", "effect")],

FUN = mean)

Construct the surface from marginal fit estimates based on HSA
model and color it by mean effect level
plotResponseSurface(data, fitResult, null_model = "hsa",

colorBy = data_mean, breaks = 10^(c(0, 3, 4, 6)),
colorPalette = c("grey", "blue", "green"))

Response surface based on Loewe additivity model and colored with
rainbow colors.
plotResponseSurface(data, fitResult, null_model = "loewe", breaks = c(-Inf, 0, Inf),

colorBy = "colors", colorPalette = rainbow(6))

End(Not run)

predict.MarginalFit Predict values on the dose-response curve

Description

Predict values on the dose-response curve

Usage

S3 method for class 'MarginalFit'
predict(object, newdata, ...)

Arguments

object Output of fitMarginals function

newdata An optional data frame in which to look for d1 and d2 variables with which
to predict. If omitted, the fitted values are used. Doses that are passed to this
function must correspond to marginal data, i.e. at least one of the doses must be
zero.

... Further arguments

44 predictOffAxis

predictOffAxis Compute off-axis predictions

Description

Given a dataframe with dose-response data, this function uses coefficient estimates from the marginal
(on-axis) monotherapy model to compute the expected values of response at off-axis dose combi-
nations using a provided null model.

Usage

predictOffAxis(
doseGrid,
fitResult,
transforms = fitResult$transforms,
null_model = c("loewe", "hsa", "bliss", "loewe2"),
fit = NULL,
...

)

Arguments

doseGrid A dose grid with unique combination of doses

fitResult Monotherapy (on-axis) model fit, e.g. produced by fitMarginals. It has to be a
"MarginalFit" object or a list containing df, sigma, coef, shared_asymptote
and method elements for, respectively, marginal model degrees of freedom,
residual standard deviation, named vector of coefficient estimates, logical value
of whether shared asymptote is imposed and method for estimating marginal
models during bootstrapping (see fitMarginals). If biological and power trans-
formations were used in marginal model estimation, fitResult should contain
transforms elements with these transformations. Alternatively, these can also
be specified via transforms argument.

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

null_model Specified null model for the expected response surface. Currently, allowed op-
tions are "loewe" for generalized Loewe model, "hsa" for Highest Single Agent
model, "bliss" for Bliss additivity, and "loewe2" for the alternative Loewe
generalization.

fit a pre-calculated off-axis fit

... Further arguments passed on to the Loewe fitters

Value

This functions returns a named vector with predicted off-axis points

predictResponseSurface 45

Examples

data <- subset(directAntivirals, experiment == 1)
Data must contain d1, d2 and effect columns
transforms <- getTransformations(data)
fitResult <- fitMarginals(data, transforms)

uniqueDoses <- with(data, list("d1" = sort(unique(data$d1)),
"d2" = sort(unique(data$d2))))
doseGrid <- expand.grid(uniqueDoses)

predictOffAxis(fitResult, null_model = "hsa", doseGrid = doseGrid)

predictResponseSurface

Predict the entire response surface, so including on-axis points, and
return the result as a matrix. For plotting purposes.

Description

Predict the entire response surface, so including on-axis points, and return the result as a matrix.
For plotting purposes.

Usage

predictResponseSurface(
doseGrid,
fitResult,
null_model,
transforms = fitResult$transforms

)

Arguments

doseGrid A dose grid with unique combination of doses

fitResult Monotherapy (on-axis) model fit, e.g. produced by fitMarginals. It has to be a
"MarginalFit" object or a list containing df, sigma, coef, shared_asymptote
and method elements for, respectively, marginal model degrees of freedom,
residual standard deviation, named vector of coefficient estimates, logical value
of whether shared asymptote is imposed and method for estimating marginal
models during bootstrapping (see fitMarginals). If biological and power trans-
formations were used in marginal model estimation, fitResult should contain
transforms elements with these transformations. Alternatively, these can also
be specified via transforms argument.

null_model Specified null model for the expected response surface. Currently, allowed op-
tions are "loewe" for generalized Loewe model, "hsa" for Highest Single Agent
model, "bliss" for Bliss additivity, and "loewe2" for the alternative Loewe
generalization.

46 print.summary.BIGLconfInt

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

predictVar Predict variance

Description

Predict variance

Usage

predictVar(means, model, invTransFun)

Arguments

means a vector of means

model The mean-variance model

invTransFun the inverse transformation function, back to the variance domain

print.summary.BIGLconfInt

Print summary of BIGLconfInt object

Description

Print summary of BIGLconfInt object

Usage

S3 method for class 'summary.BIGLconfInt'
print(x, ...)

Arguments

x Summary of BIGLconfInt object

... Further arguments

print.summary.MarginalFit 47

print.summary.MarginalFit

Print method for summary of MarginalFit object

Description

Print method for summary of MarginalFit object

Usage

S3 method for class 'summary.MarginalFit'
print(x, ...)

Arguments

x Summary of MarginalFit object

... Further arguments

print.summary.maxR Print summary of maxR object

Description

Print summary of maxR object

Usage

S3 method for class 'summary.maxR'
print(x, ...)

Arguments

x Summary of "maxR" object

... Further arguments

48 print.summary.ResponseSurface

print.summary.meanR Print summary of meanR object

Description

Print summary of meanR object

Usage

S3 method for class 'summary.meanR'
print(x, ...)

Arguments

x Summary of meanR object

... Further arguments

print.summary.ResponseSurface

Print method for the summary function of ResponseSurface object

Description

Print method for the summary function of ResponseSurface object

Usage

S3 method for class 'summary.ResponseSurface'
print(x, ...)

Arguments

x Summary of ResponseSurface object

... Further parameters

residuals.MarginalFit 49

residuals.MarginalFit Residuals from marginal model estimation

Description

Residuals from marginal model estimation

Usage

S3 method for class 'MarginalFit'
residuals(object, ...)

Arguments

object Output of fitMarginals function

... Further arguments

runBIGL Run the BIGL application for demonstrating response surfaces

Description

Run the BIGL application for demonstrating response surfaces

Usage

runBIGL(...)

Arguments

... Pass parameters to runApp

Examples

Not run:
runBIGL()

End(Not run)

50 scaleResids

sampleResids Sample residuals according to a new model

Description

Sample residuals according to a new model

Usage

sampleResids(means, sampling_errors, method, rescaleResids, ...)

Arguments

means a vector of means
sampling_errors

Sampling vector to resample errors from. Used only if error is 4 and is passed
as argument to generateData. If sampling_errors = NULL (default), mean
residuals at off-axis points between observed and predicted response are taken.

method What assumption should be used for the variance of on- and off-axis points. This
argument can take one of the values from c("equal", "model", "unequal").
With the value "equal" as the default. "equal" assumes that both on- and off-
axis points have the same variance, "unequal" estimates a different parameter
for on- and off-axis points and "model" predicts variance based on the average
effect of an off-axis point. If no transformations are used the "model" method
is recommended. If transformations are used, only the "equal" method can be
chosen.

rescaleResids a boolean indicating whether to rescale residuals, or else normality of the resid-
uals is assumed.

... passed on to predictVar

Value

sampled residuals

scaleResids Functions for scaling, and rescaling residuals. May lead to unstable
behaviour in practice

Description

Functions for scaling, and rescaling residuals. May lead to unstable behaviour in practice

Usage

scaleResids(sampling_errors, ...)

simulateNull 51

Arguments

sampling_errors

A vector of raw residuals

... passed on to predictVar

Details

Residuals are calculated with respect to the average observation on the off-axis point, so replicates
are required!

simulateNull Simulate data from a given null model and monotherapy coefficients

Description

Simulate data from a given null model and monotherapy coefficients

Usage

simulateNull(
data,
fitResult,
doseGrid,
transforms = fitResult$transforms,
startvalues,
null_model = c("loewe", "hsa", "bliss", "loewe2"),
...

)

Arguments

data Dose-response dataframe.

fitResult Monotherapy (on-axis) model fit, e.g. produced by fitMarginals. It has to be a
"MarginalFit" object or a list containing df, sigma, coef, shared_asymptote
and method elements for, respectively, marginal model degrees of freedom,
residual standard deviation, named vector of coefficient estimates, logical value
of whether shared asymptote is imposed and method for estimating marginal
models during bootstrapping (see fitMarginals). If biological and power trans-
formations were used in marginal model estimation, fitResult should contain
transforms elements with these transformations. Alternatively, these can also
be specified via transforms argument.

doseGrid A grid of dose combinations

transforms Transformation functions. If non-null, transforms is a list containing 5 el-
ements, namely biological and power transformations along with their inverse
functions and compositeArgs which is a list with argument values shared across
the 4 functions. See vignette for more information.

52 summary.BIGLconfInt

startvalues Starting values for the non-linear equation, from the observed data

null_model Specified null model for the expected response surface. Currently, allowed op-
tions are "loewe" for generalized Loewe model, "hsa" for Highest Single Agent
model, "bliss" for Bliss additivity, and "loewe2" for the alternative Loewe
generalization.

... Further parameters that will be passed to generateData

Value

List with data element containing simulated data and fitResult element containing marginal fit
on the simulated data.

Examples

data <- subset(directAntivirals, experiment == 1)
Data must contain d1, d2 and effect columns
fitResult <- fitMarginals(data)
simDat <- simulateNull(data, fitResult, expand.grid(d1 = data$d1, d2 = data$d2),
null_model = "hsa")

summary.BIGLconfInt Summary of confidence intervals object

Description

Summary of confidence intervals object

Usage

S3 method for class 'BIGLconfInt'
summary(object, ...)

Arguments

object Output from bootConfInt

... Further arguments

summary.MarginalFit 53

summary.MarginalFit Summary of MarginalFit object

Description

Summary of MarginalFit object

Usage

S3 method for class 'MarginalFit'
summary(object, ...)

Arguments

object Output of fitMarginals function

... Further arguments

summary.maxR Summary of maxR object

Description

Summary of maxR object

Usage

S3 method for class 'maxR'
summary(object, ...)

Arguments

object Object of "maxR" class

... Further arguments

54 summary.ResponseSurface

summary.meanR Summary of meanR object

Description

Summary of meanR object

Usage

S3 method for class 'meanR'
summary(object, ...)

Arguments

object Output from meanR

... Further arguments

summary.ResponseSurface

Summary of ResponseSurface object

Description

Summary of ResponseSurface object

Usage

S3 method for class 'ResponseSurface'
summary(object, ...)

Arguments

object Output of fitSurface

... Further parameters

synergy_plot_bycomp 55

synergy_plot_bycomp Plot 2D cross section of response surface

Description

Plot 2D cross section of response surface

Usage

synergy_plot_bycomp(ls, xlab = NULL, ylab = NULL, color = FALSE, plotBy = NULL)

Arguments

ls list of results objects obtained from fitSurface. Names of list objects expected
to be one of the null model options i.e. loewe, loewe2, hsa, bliss

xlab label for x-axis

ylab label for y-axis

color plot lines in colour? Defaults to FALSE

plotBy compound name to be used for order of plotting. If plotBy = "Compound 1" then
plots are split by concentrations in Compound 1 and concentrations in Com-
pound 2 are shown on the x-axis.

Author(s)

Mohammed Ibrahim

Examples

Not run:
data <- subset(directAntivirals, experiment == 1)
transforms <- list("PowerT" = function(x, args) with(args, log(x)),

"InvPowerT" = function(y, args) with(args, exp(y)),
"BiolT" = function(x, args) with(args, N0 * exp(x * time.hours)),
"InvBiolT" = function(y, args) with(args, 1/time.hours * log(y/N0)),
"compositeArgs" = list(N0 = 1, time.hours = 72))

fitResult <- fitMarginals(data, transforms)
nullModels <- c("loewe", "loewe2", "bliss", "hsa")
rs_list <- Map(fitSurface, null_model = nullModels, MoreArgs = list(

data = data, fitResult = fitResult, B.CP = 50, statistic = "none"))
synergy_plot_bycomp(ls = rs_list, plotBy = "Compound 1", color = TRUE)
synergy_plot_bycomp(ls = rs_list, plotBy = "Compound 2", color = TRUE)

End(Not run)

56 vcov.MarginalFit

vcov.MarginalFit Estimate of coefficient variance-covariance matrix

Description

Estimate of coefficient variance-covariance matrix

Usage

S3 method for class 'MarginalFit'
vcov(object, ...)

Arguments

object Output of fitMarginals function

... Further arguments

Index

addResids, 3

backscaleResids, 4
Blissindependence, 4
bootConfInt, 5, 52
boxcox.transformation, 7

coef.MarginalFit, 7
col2hex, 8
colors, 8
constructFormula, 8, 11, 27, 28
contour.ResponseSurface, 9

df.residual.MarginalFit, 9
directAntivirals, 10
directAntivirals_ALL, 10

fitMarginals, 6, 7, 9, 10, 11, 12, 13, 16, 18,
23, 25, 26, 29, 31, 32, 37, 43–45, 49,
51, 53, 56

fitSurface, 9, 12, 16, 20, 23, 26, 34, 38, 39,
41, 54, 55

fitted.MarginalFit, 16
fitted.ResponseSurface, 16
format, 36, 38

generalizedLoewe, 17
generateData, 6, 14, 17, 30, 33, 50, 52
get.abs_tval, 19
get.summ.data, 20
getCP, 20
getd1d2, 21
getR, 22
GetStartGuess, 22
getTransformations, 23, 23

harbronLoewe, 24
hsa, 25

initialMarginal, 11, 25, 27, 28
isobologram, 26

L4, 27

makeCluster, 30, 32
marginalNLS, 27
marginalOptim, 28
max, 42
maxR, 15, 28, 28, 34, 38
mean, 42
meanR, 15, 31, 31, 33, 38, 54
median, 42
min, 42
modelVar, 33

nls, 11
nlsLM, 11

optim, 11, 28
optim.boxcox, 19, 23, 34
outsidePoints, 34

palette, 8
plot.BIGLconfInt, 35, 39
plot.effect-size, 36
plot.MarginalFit, 37
plot.maxR, 9, 37
plot.meanR, 38
plot.ResponseSurface, 39, 40
plotConfInt, 39
plotMeanVarFit, 40
plotResponseSurface, 39, 40, 42
predict.MarginalFit, 43
predictOffAxis, 6, 29, 30, 32, 41, 44
predictResponseSurface, 45
predictVar, 46
print.summary.BIGLconfInt, 46
print.summary.MarginalFit, 47
print.summary.maxR, 47
print.summary.meanR, 48
print.summary.ResponseSurface, 48

residuals.MarginalFit, 49

57

58 INDEX

rgb, 8
runApp, 49
runBIGL, 49

sampleResids, 50
scaleResids, 50
simulateNull, 51
summary.BIGLconfInt, 52
summary.MarginalFit, 53
summary.maxR, 53
summary.meanR, 54
summary.ResponseSurface, 54
synergy_plot_bycomp, 55

vcov.MarginalFit, 56

	addResids
	backscaleResids
	Blissindependence
	bootConfInt
	boxcox.transformation
	coef.MarginalFit
	col2hex
	constructFormula
	contour.ResponseSurface
	df.residual.MarginalFit
	directAntivirals
	directAntivirals_ALL
	fitMarginals
	fitSurface
	fitted.MarginalFit
	fitted.ResponseSurface
	generalizedLoewe
	generateData
	get.abs_tval
	get.summ.data
	getCP
	getd1d2
	getR
	GetStartGuess
	getTransformations
	harbronLoewe
	hsa
	initialMarginal
	isobologram
	L4
	marginalNLS
	marginalOptim
	maxR
	meanR
	modelVar
	optim.boxcox
	outsidePoints
	plot.BIGLconfInt
	plot.effect-size
	plot.MarginalFit
	plot.maxR
	plot.meanR
	plot.ResponseSurface
	plotConfInt
	plotMeanVarFit
	plotResponseSurface
	predict.MarginalFit
	predictOffAxis
	predictResponseSurface
	predictVar
	print.summary.BIGLconfInt
	print.summary.MarginalFit
	print.summary.maxR
	print.summary.meanR
	print.summary.ResponseSurface
	residuals.MarginalFit
	runBIGL
	sampleResids
	scaleResids
	simulateNull
	summary.BIGLconfInt
	summary.MarginalFit
	summary.maxR
	summary.meanR
	summary.ResponseSurface
	synergy_plot_bycomp
	vcov.MarginalFit
	Index

