--- title: "Advanced user in-text tables" author: "Laure Cougnaud" date: "`r format(Sys.Date(), '%B %d, %Y')`" output: rmarkdown::html_document: toc: true toc_float: true toc_depth: 5 number_sections: true vignette: > %\VignetteIndexEntry{Advanced user of in-text tables} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- In this vignette we focus on providing more explanation on how the `inTextSummaryTable` package actually works. We would describe some of the functionalities less exposed to the users. We assume you are already familiar on how to create and export tables, otherwise we advise to first check out the dedicated vignettes for creating and exporting tables. The vignettes are accessible with the commands below. ```{r getVignette, eval = FALSE} vignette("inTextSummaryTable-createTables", "inTextSummaryTable") vignette("inTextSummaryTable-exportTables", "inTextSummaryTable") ``` We will first create example data sets to show how the exporting functionalities work. The data sets used are available in the `clinUtils` package. ```{r options, echo = FALSE} library(knitr) opts_chunk$set( echo = TRUE, results = 'markup', warning = FALSE, # stop document execution if error (not the default) error = FALSE, message = FALSE, cache = FALSE, fig.width = 8, fig.height = 7, fig.path = "./figures_vignette/", fig.align = 'center') options(width = 170) # instead of warn = 0 by default # include warnings when they occur in the document options(warn = 1) ``` ```{r loadPackages} library(inTextSummaryTable) library(clinUtils) library(pander) library(tools) # toTitleCase ``` ```{r loadData} # load example data data(dataADaMCDISCP01) dataAll <- dataADaMCDISCP01 labelVars <- attr(dataAll, "labelVars") dataADSL <- dataADaMCDISCP01$ADSL ``` ```{r formatExampleData} dataAE <- subset(dataAll$ADAE, SAFFL == "Y" & TRTEMFL == "Y") dataAEInterest <- subset(dataAE, AESOC %in% c( "INFECTIONS AND INFESTATIONS", "GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS" ) ) # ensure that order of elements is the one specified in # the corresponding numeric variable dataAEInterest$TRTA <- reorder(dataAEInterest$TRTA, dataAEInterest$TRTAN) dataAEInterest$AESEV <- factor(dataAEInterest$AESEV, levels = c("MILD", "MODERATE")) dataTotalAE <- subset(dataAll$ADSL, TRT01A != "Placebo") # should contain columns specified in 'colVar' dataTotalAE$TRTA <- dataTotalAE$TRT01A ``` # Detailed framework of the creation of the in-text table The `getSummaryStatisticsTable` consists of the following framework: * **computation of the summary statistics** table with the **`computeSummaryStatisticsTable`** function * **export of the table** to the required format with the **`outputType`** parameter ## Computation of the summary statistics The supporting data for the summary statistics table, is accessed via the **`computeSummaryStatisticsTable`**. This includes the entire set of statistics (as numeric) and combined statistic set. The output from the `computeSummaryStatisticsTable` is equivalent of the table output by the `getSummaryStatisticsTable` function when the `outputType` is set to 'data.frame-base'. ```{r computeSummaryStatisticsTable} summaryTable <- computeSummaryStatisticsTable( data = dataAEInterest, rowVar = c("AESOC", "AEDECOD"), rowVarTotalInclude = c("AESOC", "AEDECOD"), colVar = "TRTA", stats = getStats("n (%)"), dataTotal = dataTotalAE, labelVars = labelVars, rowVarLab = c('AESOC' = "TEAE by SOC and Preferred Term\nn (%)") ) pander(head(summaryTable, 3)) ``` Please note the presence of the **`isTotal` column**, which flags the records containing the number of subjects reported in the table header. ```{r computeSummaryStatisticsTable-isTotal} pander(subset(summaryTable, isTotal)) ``` ## Export table to the requested format The summary table is exported to the format of interest with: ```{r export-flextable} export( summaryTable = summaryTable, outputType = "flextable" ) ``` Please see the vignette: `inTextSummaryTable-exportTables` for more information on the different export types available. # Combine summary statistics table ## Via the `combine` function Summary statistics tables can be combined with the `combine` function. ```{r combine} tableDemoCat <- computeSummaryStatisticsTable( data = dataADSL, var = c("SEX", "AGE"), varInclude0 = TRUE, colVar = "TRT01P", stats = getStats("n (%)", includeName = FALSE), labelVars = labelVars ) tableDemoCont <- computeSummaryStatisticsTable( data = dataADSL, var = c("HEIGHTBL", "WEIGHTBL"), colVar = "TRT01P", stats = getStats(c("n", "Mean")), labelVars = labelVars ) tableDemo <- combine(tableDemoCat, tableDemoCont) export(tableDemo) ``` ## Manually The tables created via the `inTextSummaryTable` are simple R `data.frame` objects, so these can be combined/update to include extra statistics of interest. The general workflow is to: * create a table of descriptive statistics with the package (via the `computeSummaryStatisticsTable` function) * create a `data.frame` with your statistics of relevance - in a similar format * combine your table with a table created by the package * export it (via the `exportSummaryStatisticsTable` function) For example, we combine the descriptive statistics table created above with a set of pre-computed statistics (e.g. p-values of the difference between the treatment groups). ```{r combine-manually} dataADSL$TRT01P <- with(dataADSL, reorder(TRT01P, TRT01PN)) # check format of table created with the package: descTable <- tableDemoCont descTable[, c("variable", "TRT01P", "isTotal", "n", "Mean")] ``` ### Statistics in rows ```{r combine-manually-rows} # add p-values in an extra row infTable <- unique(subset(descTable, !isTotal)[, c("variable", "TRT01P"), drop = FALSE]) infTable[which(infTable$variable == "Baseline Height (cm)"), "pValue"] <- 1e-10 infTable[which(infTable$variable == "Baseline Weight (kg)"), "pValue"] <- 1e-9 summaryTable <- plyr::rbind.fill(descTable, infTable) exportSummaryStatisticsTable( summaryTable = summaryTable, rowVar = "variable", colVar = "TRT01P", statsVar = c("n", "Mean", "pValue") ) ``` ### Statistics in rows, in an extra column ```{r combine-manually-columns} compLab <- "Comparison between treatments (p-value)" # add p-values in a new column - in an extra row infTable <- unique(subset(descTable, !isTotal)[, "variable", drop = FALSE]) infTable$TRT01P <- compLab infTable[which(infTable$variable == "Baseline Height (cm)"), "pValue"] <- 1e-10 infTable[which(infTable$variable == "Baseline Weight (kg)"), "pValue"] <- 1e-9 summaryTable <- plyr::rbind.fill(descTable, infTable) # order columns to have comparison column as last summaryTable$TRT01P <- factor(summaryTable$TRT01P, levels = c(levels(dataADSL$TRT01P), compLab)) exportSummaryStatisticsTable( summaryTable = summaryTable, rowVar = "variable", colVar = "TRT01P", statsVar = c("n", "Mean", "pValue") ) ``` ### Statistics in an extra column ```{r combine-manually-columns-rows} infTable <- unique(subset(descTable, !isTotal)[, "variable", drop = FALSE]) infTable$TRT01P <- compLab infTable[which(infTable$variable == "Baseline Height (cm)"), "Mean"] <- 1e-10 infTable[which(infTable$variable == "Baseline Weight (kg)"), "Mean"] <- 1e-9 summaryTable <- plyr::rbind.fill(descTable, infTable) # order columns to have comparison column as last summaryTable$TRT01P <- factor(summaryTable$TRT01P, levels = c(levels(dataADSL$TRT01P), compLab)) exportSummaryStatisticsTable( summaryTable = summaryTable, rowVar = "variable", colVar = "TRT01P", statsVar = c("n", "Mean") ) ``` # Data pre-processing The variables used for the row and columns of the summary statistics tables should be present in a long format in the input data for the `getSummaryStatisticsTable` function. In case the grouping of the rows/columns is more complex and no grouping variable is yet available in the data, the function `combineVariables` offers simpler functionalities to create the input data. The label for the grouping is extracted from the SAS dataset labels if `labelVars` is specified, or can be customized (`label` parameter). For example, the adverse events are counted for different population set: screened population, completer population, only events with high severity, or related to the treatment and with high severity. ```{r combineVariables} # prepare the data: create grouping of interest dataAEGroup <- combineVariables( data = dataAEInterest, newVar = "AEGRP", paramsList = list( # for all screened patients list(var = "TRTA", value = "Xanomeline High Dose"), # for moderate severity list(var = "AESEV", value = "MODERATE", labelExtra = "Moderate"), list(var = "AENDY", label = paste("With adverse events ending date")) ), # include also counts for all records includeAll = TRUE, labelAll = "All Adverse events", labelVars = labelVars ) labelVars["AEGRP"] <- "Patient groups of interest" # create the table getSummaryStatisticsTable( data = dataAEGroup, colVar = "TRTA", rowVar = "AEGRP", labelVars = labelVars, dataTotal = dataTotalAE, stats = list(expression(paste0(statN, " (", round(statPercN, 1), ")"))), title = "Table: Adverse events: counts for groups of interest", footer = "Statistics: n (%)" ) ``` # Appendix ## Session information ```{r includeSessionInfo, echo = FALSE} pander(sessionInfo()) ```