--- title: "Template to create patient profiles for SDTM datasets" subtitle: "Study: X, Batch X" author: "Laure Cougnaud" date: "`r format(Sys.Date(), '%B %d, %Y')`" output: rmarkdown::html_document: toc: true toc_float: true toc_depth: 5 number_sections: true vignette: > %\VignetteIndexEntry{SDTM template for patient profiles} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- # Introduction This document presents an example of standard patient profile report for a typical CDISC 'Study Data Tabulation Model' (a.k.a SDTM) datasets. This document is intended to be used as a template to create patient profile report for your specific study. You can copy the source code of this document into your working directory with: ```{r setUpTemplateForYourStudy, eval = FALSE} # get template from the package pathTemplate <- system.file( "doc", "patientProfiles-template-SDTM.Rmd", package = "patientProfilesVis" ) file.copy(from = pathTemplate, to = ".") # Note: your current working directory can be checked with: getwd() ``` This template can then be further tailored to your specific study (changing data path, variables available in the data, ...). ```{r patientProfiles-optionsChunks, echo = FALSE, cache = FALSE} library(knitr) knitr::opts_chunk$set( error = FALSE, # stop document execution if error (not the default) fig.align = "center" ) ``` The following R packages are required: ```{r patientProfiles-loadPackages} library(patientProfilesVis) ``` ## Dataset The SDTMs datasets are imported into R. ```{r patientProfiles-loadData} library(clinUtils) # For this vignette, an example STDM dataset is used # (subset of the CDISC Pilot 01 study) data(dataSDTMCDISCP01, package = "clinUtils") dataAll <- dataSDTMCDISCP01 labelVars <- attr(dataSDTMCDISCP01, "labelVars") # If SDTM datasets should be imported from the external folder, # the following code could be used: # pathFiles <- list.files(path = "/path/to/data", pattern = "*.sas7bdat$", full.names = TRUE) # dataAll <- loadDataADaMSDTM(files = pathFiles) # labelVars <- attr(dataAll, "labelVars") ``` ```{r patientProfiles-initialization} patientProfilesPlots <- list() ``` # Creation of patient profiles For each domain of interest, the subject profiles are created. See the vignette: ## Demographics ```{r patientProfiles-demographics} dmPlots <- subjectProfileTextPlot( data = dataAll$DM, paramValueVar = c( "SEX", "RACE", "ETHNIC", "COUNTRY", "ARM", "AGE", "RFSTDTC" ), # optional: labelVars = labelVars ) patientProfilesPlots <- c(patientProfilesPlots, list(DM = dmPlots)) ``` ## Medical history ```{r patientProfiles-medicalHistory} mhPlots <- subjectProfileTextPlot( data = dataAll$MH, paramValueVar = c("MHDECOD", "MHTERM", "MHSTDTC"), #"MHENDTC" if available # optional: paramGroupVar = c("MHSTDTC", "MHDY"), title = "Medical history (Start - End)", labelVars = labelVars, table = TRUE ) patientProfilesPlots <- c(patientProfilesPlots, list(MH = mhPlots)) ``` ## Concomitant medications ```{r patientProfiles-concomitantMedications} cmPlots <- subjectProfileIntervalPlot( data = dataAll$CM, paramVar = c( "CMTRT", "CMDOSE", "CMDOSU", "CMROUTE", "CMDOSFRQ" ), timeStartVar = "CMSTDY", timeEndVar = "CMENDY", # optional: paramGroupVar = "CMCLAS", # or CMINDC colorVar = "CMCLAS", # or CMINDC labelVars = labelVars, title = "Concomitant medications", # To zoom in axis scale in study time frame # (to avoid scale is focused on negative pre-study time frame for CM) timeTrans = getTimeTrans(type = "asinh-neg"), alpha = 0.8, timeAlign = FALSE ) patientProfilesPlots <- c(patientProfilesPlots, list(CM = cmPlots)) ``` ## Treatment exposure ```{r patientProfiles-treatmentExposure} exPlots <- subjectProfileIntervalPlot( data = dataAll$EX, paramVar = c( "EXTRT", "EXDOSE", "EXDOSU", "EXDOSFRM", "EXDOSFRQ", "EXROUTE" ), # "EXTPT" if available timeStartVar = "EXSTDY", timeEndVar = "EXENDY", # optional: colorVar = "EXDOSFRM", title = "Treatment exposure", alpha = 0.8, labelVars = labelVars ) patientProfilesPlots <- c(patientProfilesPlots, list(EX = exPlots)) ``` ## Adverse events ```{r patientProfiles-adverseEvents} dataAE <- dataAll$AE$AESEV # to adapt for specific dataset dataAE$AESEV <- factor(dataAll$AE$AESEV, levels = c("MILD", "MODERATE", "SEVERE")) aePlots <- subjectProfileIntervalPlot( data = dataAll$AE, paramVar = "AEDECOD", # AETERM, depending on coding timeStartVar = "AESTDY", timeEndVar = "AEENDY", # optional: paramGroupVar = "AESOC", colorVar = "AESEV", title = "Adverse events", timeAlign = FALSE, alpha = 0.8, labelVars = labelVars ) patientProfilesPlots <- c(patientProfilesPlots, list(AE = aePlots)) ``` ## Laboratory measurements ```{r patientProfiles-laboratory} dataLB <- dataAll$LB # to adapt for dataset dataLB$LBNRIND <- factor(dataLB$LBNRIND, levels = c("LOW", "NORMAL", "HIGH", "ABNORMAL")) # specify custom color and shape palette colorPaletteLB <- clinUtils::getPaletteCDISC(x = dataLB$LBNRIND, var = "NRIND", type = "color") shapePaletteLB <- clinUtils::getPaletteCDISC(x = dataLB$LBNRIND, var = "NRIND", type = "shape") lbPlots <- subjectProfileLinePlot( data = dataLB, paramValueVar = "LBSTRESN", paramNameVar = "LBTEST", timeVar = "LBDY", # optional paramValueRangeVar = c("LBSTNRLO", "LBSTNRHI"), paramGroupVar = "LBCAT", # "LBSCAT" if available colorVar = "LBNRIND", colorPalette = colorPaletteLB, shapeVar = "LBNRIND", shapePalette = shapePaletteLB, shapeSize = 4, title = "Laboratory test measurements", alpha = 0.8, labelVars = labelVars ) patientProfilesPlots <- c(patientProfilesPlots, list(LB = lbPlots)) ``` ## Vital signs ```{r patientProfiles-vitalSigns} # If available, reference range indicator # could be displayed via the color/shape variable vsPlots <- subjectProfileLinePlot( data = dataAll$VS, paramValueVar = "VSSTRESN", paramNameVar = "VSTEST", timeVar = "VSDY", # optional # paramGroupVar = "VSCAT", # if available colorVar = "VSPOS", # if available shapeSize = 2, title = "Vital signs", alpha = 0.8, labelVars = labelVars ) patientProfilesPlots <- c(patientProfilesPlots, list(VS = vsPlots)) ``` ## Electrocardiogram Note: no ECG data is available for the example dataset, so this domain is not considered for the example. ```{r patientProfiles-ECG, eval = FALSE} # If available, reference range indicator # could be displayed via the color/shape variable egPlots <- subjectProfileLinePlot( data = dataAll$EG, paramValueVar = "EGSTRESN", paramNameVar = "EGTEST", timeVar = "EGDY", # optional title = "Electrocardiogram", alpha = 0.8, labelVars = labelVars ) patientProfilesPlots <- c(patientProfilesPlots, list(EG = egPlots)) ``` ## Creation of the reports The subject profile report is created by subject. Please note that the subject profile reports are not not created by default in the vignette, for time constraints. Feel free to run yourself the code, and check the resulting pdf reports! ```{r patientProfiles-createSubjectProfileReport, message = FALSE, warning = TRUE, eval = FALSE} pathsPatientProfiles <- createSubjectProfileReport( listPlots = patientProfilesPlots, # optional reportPerSubject = TRUE, verbose = TRUE, outputFile = './patientProfiles/subjectProfile.pdf', timeAlign = "all", timeAlignPerSubject = "all", exportBatchSize = 5, # export subjects with highest adverse events severity subjectSortData = dataAll$AE, subjectSortVar = "AESEV", subjectSortDecreasing = TRUE, # # only patients with severe adverse events # subjectSubsetData = dataAll$AE, # subsetVar = "AETOXGR", # subsetValue = "SEVERE" ) ``` # Session information ```{r sessionInformation, echo = FALSE} library(pander) pander(sessionInfo()) ```